Dimerization of CPAP orchestrates centrosome cohesion plasticity.
نویسندگان
چکیده
Centrosome cohesion and segregation are accurately regulated to prevent an aberrant separation of duplicated centrosomes and to ensure the correct formation of bipolar spindles by a tight coupling with cell cycle machinery. CPAP is a centrosome protein with five coiled-coil domains and plays an important role in the control of brain size in autosomal recessive primary microcephaly. Previous studies showed that CPAP interacts with tubulin and controls centriole length. Here, we reported that CPAP forms a homodimer during interphase, and the fifth coiled-coil domain of CPAP is required for its dimerization. Moreover, this self-interaction is required for maintaining centrosome cohesion and preventing the centrosome from splitting before the G(2)/M phase. Our biochemical studies show that CPAP forms homodimers in vivo. In addition, both monomeric and dimeric CPAP are required for accurate cell division, suggesting that the temporal dynamics of CPAP homodimerization is tightly regulated during the cell cycle. Significantly, our results provide evidence that CPAP is phosphorylated during mitosis, and this phosphorylation releases its intermolecular interaction. Taken together, these results suggest that cell cycle-regulated phosphorylation orchestrates the dynamics of CPAP molecular interaction and centrosome splitting to ensure genomic stability in cell division.
منابع مشابه
Electron Microscopy Structural Insights into CPAP Oligomeric Behavior: A Plausible Assembly Process of a Supramolecular Scaffold of the Centrosome
Centrosomal P4.1-associated protein (CPAP) is a cell cycle regulated protein fundamental for centrosome assembly and centriole elongation. In humans, the region between residues 897-1338 of CPAP mediates interactions with other proteins and includes a homodimerization domain. CPAP mutations cause primary autosomal recessive microcephaly and Seckel syndrome. Despite of the biological/clinical re...
متن کاملCEP120 and SPICE1 Cooperate with CPAP in Centriole Elongation
Centrosomes organize microtubule (MT) arrays and are comprised of centrioles surrounded by ordered pericentriolar proteins. Centrioles are barrel-shaped structures composed of MTs, and as basal bodies they template the formation of cilia/flagella. Defects in centriole assembly can lead to ciliopathies and genome instability. The assembly of procentrioles requires a set of conserved proteins. It...
متن کاملTankyrase 1 regulates centrosome function by controlling CPAP stability.
CPAP--a gene mutated in primary microcephaly--is required for procentriole formation. Here we show that CPAP degradation and function is controlled by the poly(ADP-ribose) polymerase tankyrase 1. CPAP is PARsylated by tankyrase 1 in vitro and in vivo. Overexpression of tankyrase 1 leads to CPAP proteasomal degradation, preventing centriole duplication, whereas depletion of tankyrase 1 stabilize...
متن کاملPLK2 phosphorylation is critical for CPAP function in procentriole formation during the centrosome cycle.
Control of centrosome duplication is tightly linked with the progression of the cell cycle. Recent studies suggest that the fundamental process of centriole duplication is evolutionally conserved. Here, we identified centrosomal P4.1-associated protein (CPAP), a human homologue of SAS-4, as a substrate of PLK2 whose activity oscillates during the cell cycle. PLK2 phosphorylates the S589 and S59...
متن کاملDaughter Centriole Elongation Is Controlled by Proteolysis
The centrosome is the major microtubule-organizing center of most mammalian cells and consists of a pair of centrioles embedded in pericentriolar material. Before mitosis, the two centrioles duplicate and two new daughter centrioles form adjacent to each preexisting maternal centriole. After initiation of daughter centriole synthesis, the procentrioles elongate in a process that is poorly under...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 285 4 شماره
صفحات -
تاریخ انتشار 2010